We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria

    Sumreen Hayat

    Department of Biotechnology, University of Sargodha, University Road, Sargodha 40100, Pakistan

    Department of Microbiology, Government College University, Faisalabad, Pakistan

    ,
    Saima Muzammil

    Department of Microbiology, Government College University, Faisalabad, Pakistan

    ,
    Shabana

    *Author for correspondence:

    E-mail Address: shabana.mmg@pu.edu.pk

    Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan

    ,
    Bilal Aslam

    Department of Microbiology, Government College University, Faisalabad, Pakistan

    ,
    Muhammad Hassnain Siddique

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    ,
    Muhammad Saqalein

    Department of Microbiology, Government College University, Faisalabad, Pakistan

    &
    Muhammad Atif Nisar

    Department of Microbiology, Government College University, Faisalabad, Pakistan

    Published Online:https://doi.org/10.2217/fmb-2018-0257

    Quorum sensing (QS) is a cell density dependent regulatory process that uses signaling molecules to manage the expression of virulence genes and biofilm formation. The study of QS inhibitors has emerged as one of the most fascinating areas of research to discover novel antimicrobial agents. Compounds that block QS have become candidates as unusual antimicrobial agents, as they are leading players in the regulation of virulence of drug-resistant pathogens. Metal and metal oxide nanoparticles offer novel alternatives to combat antibiotic resistance in Gram-negative bacteria aiming their capacity as QS inhibitors. This review provides an insight into the quorum quenching potential of metal and metal oxide nanoparticles by targeting QS regulated virulence of Gram-negative bacteria.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Schuster M, Joseph Sexton D, Diggle SP, Peter Greenberg E. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).
    • 2 Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9(2), 117 (2010). •• Provides an overview of the strategies that can be used to counter bacterial infections.
    • 3 Persson T, Givskov M, Nielsen J. Quorum sensing inhibition: targeting chemical communication in gramnegative bacteria. Curr. Med. Chem. 12(26), 3103–3115 (2005).
    • 4 Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6(1), 17 (2008).
    • 5 Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3(9), 541 (2007).
    • 6 Colino C, Millán C, Lanao J. Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int. J. Mol. Sci. 19(6), 1627 (2018).
    • 7 Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest. 112(9), 1300–1307 (2003).
    • 8 Lesic B, Lépine F, Déziel E et al. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 3(9), e126 (2007).
    • 9 Raffa RB, Iannuzzo JR, Levine DR et al. Bacterial communication (“quorum sensing”) via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J. Pharmacol. Exp. Ther. 312(2), 417–423 (2005). •• Provides comprehensive information on quorum sensing.
    • 10 Dong Y-H, Gusti AR, Zhang Q, Xu J-L, Zhang L-H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68(4), 1754–1759 (2002). •• Identified the N-acyl homoserine lactonases from a bacterium.
    • 11 Lin YH, Xu JL, Hu J et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47(3), 849–860 (2003).
    • 12 Delalande L, Faure D, Raffoux A et al. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol. Ecol. 52(1), 13–20 (2005).
    • 13 Yates EA, Philipp B, Buckley C et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70(10), 5635–5646 (2002).
    • 14 Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40(1), 86–116 (2015).
    • 15 Paul D, Gopal J, Kumar M, Manikandan M. Nature to the natural rescue: silencing microbial chats. Chem. Biol. Interact. 280, 86–98 (2017).
    • 16 Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13(6), 637–648 (2000).
    • 17 Gopu V, Kothandapani S, Shetty PH. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb. Pathogenesis 79, 61–69 (2015). • Studied the effect of phytochemicals on quorum quenching.
    • 18 Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res. 29(4), 374–377 (2015).
    • 19 Vandeputte OM, Kiendrebeogo M, Rajaonson S et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 76(1), 243–253 (2010).
    • 20 Vikram A, Jesudhasan PR, Pillai SD, Patil BS. Isolimonic acid interferes with Escherichia coli O157: H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol. 12(1), 261 (2012).
    • 21 Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol. 21(12), 619–624 (2013).
    • 22 Gorske BC, Blackwell HE. Interception of quorum sensing in Staphylococcus aureus: a new niche for peptidomimetics. Org. Biomol. Chem. 4(8), 1441–1445 (2006).
    • 23 Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. Microb. Ecol. 68(1), 13–23 (2014).
    • 24 Fernandes R, Roy V, Wu H-C, Bentley WE. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nat. Nanotechnology 5(3), 213 (2010).
    • 25 Nafee N, Husari A, Maurer CK et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J. Control. Rel. 192, 131–140 (2014).
    • 26 Qais FA, Khan MS, Ahmad I. Nanoparticles as quorum sensing inhibitor: prospects and limitations. In: Biotechnological Applications of Quorum Sensing Inhibitors. Kalia V(Ed.). Springer, Singapore, 227–244 (2018). •• Provides the information on quorum quenching potential of nanoparticles (NPs).
    • 27 Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed. Res. Int. 2016, 1–17 (2016).
    • 28 Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 65 (2017).
    • 29 Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1), 1–16 (2014).
    • 30 Leung YH, Ng AM, Xu X et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10(6), 1171–1183 (2014).
    • 31 McQuillan JS, Groenaga Infante H, Stokes E, Shaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6(8), 857–866 (2012).
    • 32 Thill A, Zeyons O, Spalla O et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. Lett. 40(19), 6151–6156 (2006).
    • 33 De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133 (2008).
    • 34 Tsuji JS, Maynard AD, Howard PC et al. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol. Sci. 89(1), 42–50 (2005).
    • 35 Zimper U, Aaltonen J, McGoverin CM, Gordon KC, Krauel-Goellner K, Rades T. Quantification of process induced disorder in milled samples using different analytical techniques. Pharmaceutics 2(1), 30–49 (2010).
    • 36 Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64(2), 129–137 (2012).
    • 37 Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13(1), 42 (2015).
    • 38 Annous BA, Fratamico PM, Smith JL. Scientific status summary: quorum sensing in biofilms: why bacteria behave the way they do. J. Food Sci. 74(1), R24–R37 (2009).
    • 39 Atkinson S, Chang C-Y, Sockett RE, Cámara M, Williams P. Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J. Bacteriol. 188(4), 1451–1461 (2006).
    • 40 Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28(3), 261–289 (2004).
    • 41 Von Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41(1), 455–482 (2003).
    • 42 Zhu J, Winans SC. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl Acad. Sci. 98(4), 1507–1512 (2001).
    • 43 Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177(3), 654–659 (1995).
    • 44 Case RJ, Labbate M, Kjelleberg S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J. 2(4), 345 (2008). • Investigated the quorum sensing in proteobacteria.
    • 45 Brint JM, Ohman DE. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177(24), 7155–7163 (1995).
    • 46 Thomson N, Crow M, McGowan S, Cox A, Salmond G. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol. 36(3), 539–556 (2000).
    • 47 Sadekuzzaman M, Yang S, Mizan M, Ha S. Current and recent advanced strategies for combating biofilms. Compr. Rev. Food Sci. Food Saf. 14(4), 491–509 (2015).
    • 48 Castellano JJ, Shafii SM, Ko F et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int. Wound J. 4(2), 114–122 (2007).
    • 49 Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176(1), 1–12 (2008). • Describes the use of silver NPs in medical science
    • 50 Brandt O, Mildner M, Egger AE et al. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine 8(4), 478–488 (2012).
    • 51 Kim JS, Kuk E, Yu KN et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1), 95–101 (2007).
    • 52 Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 9(1), 30 (2011).
    • 53 Naik K, Chatterjee A, Prakash H, Kowshik M. Mesoporous TiO2 nanoparticles containing Ag ion with excellent antimicrobial activity at remarkable low silver concentrations. J. Biomed. Nanotechnol. 9(4), 664–673 (2013).
    • 54 Panáček A, Kvitek L, Prucek R et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110(33), 16248–16253 (2006).
    • 55 Khurana C, Sharma P, Pandey O, Chudasama B. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes. J. Mater. Sci. Technol. 32(6), 524–532 (2016).
    • 56 Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 10(8), 1343–1348 (2008).
    • 57 Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4(3), 707–716 (2008).
    • 58 Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275(1), 177–182 (2004).
    • 59 Jagtap S, Priolkar K. Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors. Sens. Actuators B Chem. 183, 411–418 (2013).
    • 60 Ravindran D, Ramanathan S, Arunachalam K, Jeyaraj GP, Shunmugiah KP, Arumugam VR. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study. J. Appl. Microbiol. 124(6), 1425–1440 (2018).
    • 61 Ali SG, Ansari MA, Jamal QMS et al. Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In silico Pharmacol. 5(1), 12 (2017).
    • 62 Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 99(11), 4579–4593 (2015).
    • 63 Giasuddin A, Jhuma K, Haq AM. Use of gold nanoparticles in diagnostics, surgery and medicine: a review. Bangladesh J. Med. Biochem. 5(2), 56–60 (2013).
    • 64 Jain S, Hirst D, O'Sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 85(1010), 101–113 (2012). •• Provides the information on use of gold NPs in cancer.
    • 65 Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother. 15(6), 176–180 (2010).
    • 66 Capek I. Preparation and functionalization of gold nanoparticles. J. Surf. Sci. Technol. 29, 1–18 (2013).
    • 67 Ahmad A, Senapati S, Khan MI et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7), 824 (2003).
    • 68 Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3), 503–514 (2014).
    • 69 Bindhu M, Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 120, 122–125 (2014).
    • 70 Li X, Robinson SM, Gupta A et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10), 10682–10686 (2014).
    • 71 Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chemistry Cent. J. 7(1), 11 (2013).
    • 72 Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X. Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J. Am. Chem. Soc. 132(35), 12349–12356 (2010).
    • 73 Vinoj G, Pati R, Sonawane A, Vaseeharan B. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob. Agents Chemother. 59(2), 763–771 (2015).
    • 74 Bai F, Han Y, Chen J, Zhang X-H. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274(1), 36–40 (2008).
    • 75 Kaufmann GF, Sartorio R, Lee S-H et al. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl Acad. Sci. 102(2), 309–314 (2005).
    • 76 Samanta S, Singh BR, Adholeya A. Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian J. Microbiol. 57(4), 448–460 (2017).
    • 77 Banerjee AN. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 4, 35 (2011).
    • 78 Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV. Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem. Mater. 20(7), 2455–2460 (2008).
    • 79 Cho K-H, Park J-E, Osaka T, Park S-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51(5), 956–960 (2005).
    • 80 Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000).
    • 81 Shiraishi Y, Hirai T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C 9(4), 157–170 (2008).
    • 82 Naik K, Kowshik M. Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J. Appl. Microbiol. 117(4), 972–983 (2014).
    • 83 Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP. SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4(2), 486–495 (2012).
    • 84 Wang L, Benicewicz BC. Synthesis and characterization of dye-labeled poly (methacrylic acid) grafted silica nanoparticles. ACS Macro Lett. 2(2), 173–176 (2013).
    • 85 Chu Z, Huang Y, Li L, Tao Q, Li Q. Physiological pathway of human cell damage induced by genotoxic crystalline silica nanoparticles. Biomaterials 33(30), 7540–7546 (2012).
    • 86 Chu Z, Huang Y, Tao Q, Li Q. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3(8), 3291–3299 (2011).
    • 87 Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3), 290–312 (2013).
    • 88 Miller KP. Bacterial communication and its role as a target for nanoparticle-based antimicrobial therapy. (2015). •• An overview of NP based antimicrobial therapy.
    • 89 Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 96(4), 803–809 (2004).
    • 90 Tomczak MM, Gupta MK, Drummy LF, Rozenzhak SM, Naik RR. Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 5(3), 876–882 (2009).
    • 91 Esakkimuthu T, Sivakumar D, Akila S. Application of nanoparticles in wastewater treatment. Pollut. Res. 33(03), 567–571 (2014).
    • 92 Horie M, Nishio K, Fujita K et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol. 22(3), 543–553 (2009).
    • 93 Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006).
    • 94 Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001).
    • 95 Al-Shabib NA, Husain FM, Hassan I et al. Biofabrication of zinc oxide nanoparticle from ochradenus baccatus leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. J. Nanomater. 2018, 1–14 (2018).
    • 96 García-Lara B, Saucedo-Mora M, Roldán-Sánchez J et al. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol. 61(3), 299–305 (2015).
    • 97 Al-Shabib NA, Husain FM, Ahmed F et al. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 6, 36761 (2016).
    • 98 Vilar Junior JC, Ribeaux DR, Alves Da Silva CA, Campos-Takaki D, Maria G. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. 2016, 1–7 (2016).
    • 99 Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13(3), 1133–1174 (2015).
    • 100 Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144(1), 51–63 (2010).
    • 101 Kaya M, Baran T, Asan-Ozusaglam M et al. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess. Eng. 20(1), 168–179 (2015).
    • 102 Ngamviriyavong P, Thananuson A, Pankongadisak P, Tanjak P, Janvikul W. Antibacterial hydrogels from chitosan derivatives. J. Metals Mater. Miner. 20(3), 113–117 (2010).
    • 103 Wardani G, Sudjarwo SA. In vitro antibacterial activity of chitosan nanoparticles against mycobacterium tuberculosis. Pharmacogn. J. 10(1), 162–166 (2018).
    • 104 Omwenga E, Hensel A, Shitandi A, Goycoolea F. Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E. coli Top 10 biosensor. Colloids Surf. B Biointerfaces 164, 125–133 (2018).
    • 105 Ilk S, Sağlam N, Özgen M, Korkusuz F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int. J. Biol. Macromol. 94, 653–662 (2017).
    • 106 Qin X, Engwer C, Desai S, Vila-Sanjurjo C, Goycoolea FM. An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules. Colloids Surf. B Biointerfaces 149, 358–368 (2017).
    • 107 Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A 41(12), 2699–2711 (2006).
    • 108 Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 40(4), 328–346 (2010).
    • 109 Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008).
    • 110 Donaldson K, Brown D, Clouter A et al. The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 15(2), 213–220 (2002).
    • 111 Oberdörster G, Maynard A, Donaldson K et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2(1), 1 (2005).
    • 112 Li N, Sioutas C, Cho A et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111(4), 455 (2003).
    • 113 Møller P, Jacobsen NR, Folkmann JK et al. Role of oxidative damage in toxicity of particulates. Free Radic. Res. 44(1), 1–46 (2010).
    • 114 Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol. Toxicol. 26(3), 225–238 (2010).
    • 115 L'azou B, Henge-Napoli M-H, Minaro L, Mirto H, Barrouillet M-P, Cambar J. Effects of cadmium and uranium on some in vitro renal targets. Cell Biol. Toxicol. 18(5), 329–340 (2002).
    • 116 Elder A, Oberdörster G. Translocation and effects of ultrafine particles outside of the lung. Clin. Occup. Environ. Med. 5(4), 785–796 (2006).
    • 117 Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharma. Sci. 90(12), 1927–1936 (2001).
    • 118 Semmler M, Seitz J, Erbe F et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 16(6-7), 453–459 (2004).
    • 119 Wang J, Zhou G, Chen C et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 168(2), 176–185 (2007).
    • 120 Han D, Tian Y, Zhang T, Ren G, Yang Z. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6, 1453 (2011).
    • 121 Hu R, Zheng L, Zhang T et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 191(1–3), 32–40 (2011).
    • 122 Heydrnejad MS, Samani RJ, Aghaeivanda S. Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (Mus musculus). Biol. Trace Elem. Res. 165(2), 153–158 (2015).
    • 123 Ramadi KB, Mohamed YA, Al-Sbiei A et al. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation. Nanotoxicology 10(8), 1061–1074 (2016).
    • 124 Pujalté I, Passagne I, Brouillaud B et al. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8(1), 1 (2011).
    • 125 Xie H, Mason MM, Wise JP. Genotoxicity of metal nanoparticles. Rev. Environ. Health 26(4), 251–268 (2011).
    • 126 Jamuna BA, Ravishankar RV. Environmental risk, human health, and toxic effects of nanoparticles. Nanomater. Environ. Prot. 523–535 (2014).
    • 127 Mckee MS, Filser J. Impacts of metal-based engineered nanomaterials on soil communities. Environ. Sci. 3(3), 506–533 (2016).
    • 128 Dimkpa CO, McLean JE, Latta DE et al. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14(9), 1125 (2012).
    • 129 El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27(1), 42–49 (2012).
    • 130 Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat. Res. 774, 49–58 (2015).
    • 131 Riahi MA, Rezaee F, Jalali V. Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. 3(1), 595–603 (2012).
    • 132 Yan S, Zhao L, Li H et al. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J. Hazard. Mater. 246, 110–118 (2013).
    • 133 Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomed. J. 20(1), 1 (2016).